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Abstract. Distance semantics is a robust way of handling dynamically
evolving and possibly contradictory information. In this paper we show
that in many cases distance-based entailments can be computerized in
a general and modular way. We consider two different approaches for
reasoning with distance semantics, apply them on some common cases,
and show their relation to other known problems.

1 Introduction

Distance semantics has a prominent role in reflecting the rationality behind the
principle of minimal change. This is a primary motif in different areas, such as
belief revision, database integration, and decision making in the context of social
choice theory. While there is no consensus about the exact nature of this seman-
tics and the properties that is should satisfy, some particular distance-based
approaches have been extensively used in those areas and are more common in
practice. As shown in [1, 2], many of these distance-based semantics have similar
representations in terms of entailment relations, so it is not surprising that simi-
lar computational forms may be used for providing reasoning platforms in those
cases. The goal of this paper is therefore to consider some of the computational
aspects behind these approaches, that is: to identify some general principles for
distance computations and apply them on some specific, nevertheless common
test cases. For this, we consider the following two reasoning paradigms:

– Deductive systems. This traditional approach to automated reasoning should
be taken with care in our context, as many classically valid rules do not hold
when distance semantics is involved. Consider, for instance, an inference
system for majority votes, in which ψ follows from Γ if there are more
formulas in Γ implying ψ than those implying ¬ψ. As it is shown below, this
consideration can be used for a distance semantics. Yet, it is evident that
this system is neither reflexive nor monotonic (p follows from {p} but not
from {p,¬p}). Moreover, it is not even closed under logical equivalence as,
e.g., {p,¬p} and {p, p,¬p} have different conclusions (which also invalidates
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the contraction rule in this case). This example indicates that even sound
systems for distance semantics, based on structural rules, are hard to get.
In the sequel we shall define a sound and complete system for one case
(minmax reasoning with uniform distances), and consider some useful sound
systems for some other distance semantics. For the latter, we shall consider
situations in which automated solvers for known problems may be incorpo-
rated for reaching completeness.

– Set computations. The other approach for reasoning with distance seman-
tics is based on computations of a minimal nonempty intersection of sets of
interpretations. The elements of each set are equally distant from the formu-
las that they evaluate, and the minimal nonempty intersection of those sets
determines the valuations that are ‘closest’ to the premises. This idea resem-
bles that of Grove [5], who defines revision in terms of set intersections. We
introduce iterative processes for computing those intersections for different
distance-based settings, and show the correspondence between this problem
and similar problems in the context of constraint programming.

In the sequel we consider a general framework for reasoning with distance
semantics and concentrate on three common cases: minmax reasoning, reasoning
by voting, and reasoning by summations of distances. Each of these reasoning
strategies is augmented with different distances (metrics), and algorithms for
computing entailments induced by these settings are provided. It is shown that
in some cases distance semantics is reducible to other well-known problems (e.g.,
a variation of maxSAT), and so off-the-shelf solvers for those problems may be
useful for distance-based reasoning as well.

2 Distance-based Semantics

2.1 Preliminaries

We fix a propositional language L with a finite set Atoms = {p1, . . . , pm} of
atomic formulas. A finite multiset of formulas in L is called a theory . For a the-
ory Γ , we denote by Atoms(Γ ) the set of atomic formulas that occur in Γ . The
set of valuations for L is Λ = {〈p1 : a1, . . . , pn : am〉 | a1, . . . , am ∈ {t, f}}. The
set of models of a formula ψ is a subset of Λ, defined as follows:
mod(pi) = {〈p1 : a1, . . . , pi : t, . . . , pn : am〉 | a1, . . . , ai−1, ai+1, . . . , am ∈ {t, f}},
mod(¬ψ) = Λ \mod(ψ),
mod(ψ ∧ ϕ) = mod(ψ) ∩mod(ϕ),
mod(ψ ∨ ϕ) = mod(ψ) ∪mod(ϕ).

For a theory Γ = {ψ1, . . . , ψn} we define mod(Γ ) = mod(ψ1) ∩ . . . ∩mod(ψn).

For defining distance-based entailments we recall the definitions in [1, 2].

Definition 1. A pseudo-distance on U is a total function d : U×U → N so that
for all ν, µ ∈ U d(ν, µ) = d(µ, ν) (symmetry), and d(ν, µ) = 0 iff ν = µ (identity
preservation). A distance (metric) d on U is a pseudo-distance that satisfies the
triangular inequality: for all ν, µ, σ ∈ U , d(ν, σ) ≤ d(ν, µ) + d(µ, σ).



Example 1. It is easy to verify that the following functions are distances on the
space Λ of two-valued valuations on Atoms:

– The drastic distance: dU (ν, µ) = 0 if ν = µ and dU (ν, µ) = 1 otherwise.
– The Hamming distance: dH(ν, µ) = |{p ∈ Atoms | ν(p) 6= µ(p)} |.

Definition 2. A numeric aggregation function is a total function f whose argu-
ment is a multiset of real numbers and whose values are real numbers, such that:
(i) f is non-decreasing in the value of its argument, (ii) f({x1, . . . , xn}) = 0 iff
x1 = x2 = . . . xn = 0, and (iii) f({x}) = x for every x ∈ R.

Aggregation functions are, e.g., summation, average, maximum, and so forth.

Notation 1 Given a finite set S and a (pseudo) distance d, denote: maxdS =
max{d(s1, s2) | s1, s2 ∈ S}.
Definition 3. Given a theory Γ = {ψ1, . . . , ψn}, a valuation ν ∈Λ, a pseudo-
distance d, and an aggregation function f , define:

– d(ν, ψi) =

{
min{d(ν, µ) | µ ∈ mod(ψi)} if mod(ψi) 6= ∅,
1 + maxdΛ otherwise.

– δd,f (ν, Γ ) = f({d(ν, ψ1), . . . , d(ν, ψn)}).
Note 1. In the two extreme degenerate cases, when ψ is either a tautology or a
contradiction, all the valuations are equally distant from ψ. In the other cases,
the valuations that are closest to ψ are its models and their distance to ψ is zero.
This also implies that δd,f (ν, Γ ) = 0 iff ν ∈ mod(Γ ) (see [2]).

The next definition captures the intuition that the relevant interpretations
of a theory Γ are those that are δd,f -closest to Γ (see also [9]).

Definition 4. The most plausible valuations of Γ (with respect to a pseudo
distance d and an aggregation function f) are defined as follows:

∆d,f (Γ ) =

{{
ν ∈ Λ | ∀µ ∈ Λ δd,f (ν, Γ ) ≤ δd,f (µ, Γ )

}
if Γ 6= ∅,

Λ otherwise.

Distance-based entailments are now defined as follows:

Definition 5. For a pseudo distance d and an aggregation function f , define
Γ |=d,f ψ if ∆d,f (Γ )⊆mod(ψ).3

Example 2. Let Γ = {p,¬p, q}. As q is not related to the contradiction in Γ ,
there is no intuitive justification for concluding ¬q from Γ . This, however, is not
possible in classical logic, as Γ is not consistent. In our case, on the other hand,
we have that Γ |=dU,Σ q while Γ 6|=dU,Σ ¬q, Γ 6|=dU,Σ p and Γ 6|=dU,Σ ¬p. Similar
results are obtained for |=dH,Σ .

3 I.e., conclusions should hold in all the most plausible valuations of the premises.



2.2 Computing distance-based entailments

Proposition 1. Denote by |= the classical (two-valued) entailment. For every
pseudo distance d and aggregation function f ,
(a) If Γ is satisfiable, then Γ |=d,f ψ iff Γ |= ψ.
(b) For every Γ there is a ψ such that Γ 6|=d,f ψ.

Proof (outline). Part (a) follows from the fact that d(ν, ψ) = 0 iff ν ∈ mod(ψ)
and δd,f (ν, Γ ) = 0 iff ν ∈ mod(Γ ). Thus, Γ is satisfiable iff ∆d,f (Γ ) = mod(Γ )
(see also [2]). Part (b) follows from the fact that for every Γ , ∆d,f (Γ ) 6= ∅ (as Λ
is finite, there are always valuations that are minimally δd,f -distant from Γ ). ut

Taken together, the two items of Proposition 1 imply that every entailment
relation induced by our framework coincides with the classical entailment with
respect to consistent premises, while (unlike classical logic) it is not trivial with
respect to inconsistent theories. Thus one cannot hope for better complexity
results than those for the classical propositional logic, as for consistent premises
the entailment problem is coNP-Complete. On the other hand, it is clear from
Definition 5 and the fact that Λ is finite, that for computable distances and
aggregation functions, distance-based reasoning for finite propositional languages
is in EXP, i.e., it is decidable with (at most) exponential complexity.

The purpose of this work is, therefore, to consider some useful distance-based
settings for which there are some practical ways of computing entailments. In
particular, we consider some cases in which distance-based reasoning is reducible
to the question of satisfiability, and so off-the-shelf SAT-solvers may be incorpo-
rated for automated computations of distance-based consequences. For this, we
first need the following definitions:

Definition 6. Let d be a pseudo distance. Define a function Rd : L × N → 2Λ

by Rd(ψ, i) = {µ | ∃ν ∈ mod(ψ) d(µ, ν) ≤ i}. Also, let R0
d(ψ) = Rd(ψ, 0) and

Ri
d(ψ) = Rd(ψ, i) \ Rd(ψ, i− 1) for any i ∈ N+.

Note 2. For any ψ, the sequence Rd(ψ, i) is non-decreasing in i (with respect
to set inclusion). Also, for every i ∈ N, ν ∈ Ri

d(ψ) iff d(ν, ψ) = i. Thus, for a
satisfiable ψ, R0

d(ψ) = mod(ψ) = ∆d,f (ψ), and Rd(ψ, k) = Λ for k = maxdΛ. If
ψ is not satisfiable, then Rd(ψ, i) = Ri

d(ψ) = ∅ for every i.

Lemma 1. If all the formulas in a theory Γ = {ψ1, . . . , ψn} are satisfiable, then
there is some 0 ≤ k ≤ maxdΛ, such that

⋂
1≤i≤nRd(ψi, k) 6= ∅.

Proof. By Note 2, for every 1 ≤ i ≤ n there is a ki ≤ maxdΛ such that for every
j ≥ ki, Rd(ψi, j) = Λ. Let k = max{ki | 1 ≤ i ≤ n}. Then Rd(ψ, k) = Λ for all
1 ≤ i ≤ n, and so

⋂
1≤i≤nRd(ψi, j) = Λ. ut

Definition 7. A pseudo distance d is called inductively representable, if there
is a computable function G : 2Λ → 2Λ such that for every formula ψ and every
i ∈ N, Rd(ψ, i) = G(Rd(ψ, i− 1)). G is called an inductive representation of d.

Example 3. As Propositions 6 and 9 below show, both dU and dH are inductively
representable.



3 MinMax Reasoning

In this section we study distance-based reasoning by min-max methods, that is:
minimization of maximal distances. This kind of reasoning may be viewed as a
skeptical approach, since it minimizes worst cases (maximal distances). Distance
entailments of this type are induced by the max aggregation function.

3.1 Inductively representable distances

Min-max distance-based reasoning is characterized as follows: 4

Proposition 2. For any pseudo distance d and theory Γ = {ψ1, . . . , ψn},
a) If there is a non-satisfiable element in Γ , then ∆d,max(Γ ) = Λ.
b) If all the elements in Γ are satisfiable, then ∆d,max(Γ ) =

⋂
1≤i≤nRd(ψi,m),

where m is the minimal number such that
⋂

1≤i≤nRd(ψi,m) is not empty.

Corollary 1. For every pseudo distance d and a theory Γ of satisfiable formulas,
∆d,max(Γ ) =

⋂
1≤i≤nRd(ψi,m), where m = min{δd,max(ν, Γ ) | ν ∈ Λ}.

In case that d is inductively representable by G, the results above induce the
iterative procedure in Figure 1, for computing ∆d,max(Γ ):

MPV(G, {ψ1, . . . , ψn})
/* Most Plausible Valuations of {ψ1, . . . , ψn} w.r.t. d and max */
/* G – an inductive representation of d */

for i ∈ {1, . . . , n}: Xi ← mod(ψi)

if Xj is empty for some j ∈ {1, . . . , n}, return Λ

while (X1 ∩ . . . ∩Xn) is nonempty:

for i ∈ {1, . . . , n}: Xi ← G(Xi)

return (X1 ∩ . . . ∩Xn)

Fig. 1. Computing the most plausible valuations of {ψ1, . . . , ψn} w.r.t. d and max

Proposition 3. If d is inductively representable by G, then for every theory Γ ,
MPV(G, Γ ) terminates after at most maxdΛ iterations and computes ∆d,max(Γ ).

Proof. It is easy to see that in the i-th iteration it holds that Xj = Rd(ψj , i)
for every 1 ≤ j ≤ n. Hence, by Lemma 1, the condition in the loop is satisfied
after at most maxdΛ iterations, and so the procedure always terminates. Also,
by Proposition 2, the procedure returns ∆d,max(Γ ). ut
Note 3. It holds that ∆d,max(Γ ) = ∆d,max(Γ \ {ϕ}) for every tautology ϕ ∈ Γ .
Thus, in the computations above, tautological formulas may be disregarded.
4 Due to a lack of space some proofs are omitted.



3.2 Uniform distances

In this section we consider uniform distances, a generalization of the drastic
distance (see Example 1).

Definition 8. A distance d on Λ is called uniform, if there is some kd > 0, s.t.:

d(ν, µ) =
{

0 if ν = µ,
kd otherwise.

Proposition 4. Let d be a uniform distance and Γ = {ψ1, . . . , ψn}. Then:

∆d,max(Γ ) =
{

mod(Γ ) if mod(Γ ) 6= ∅,
Λ otherwise.

Proof. If mod(Γ ) 6= ∅, then ∆d,f (Γ ) = mod(Γ ) for every d and f (see [2]).
Otherwise, there is at least on element in Γ that is not satisfiable, and so,
for every valuation µ ∈ Λ, δd,max(µ, Γ ) = max{d(µ, ψ1), . . . , d(µ, ψn)} = kd. It
follows, then, that in this case ∆d,max(Γ ) = Λ. ut

Proposition 4 implies that for describing reasoning with uniform distances
under the minmax strategy, it is enough to examine the drastic distance (and so
henceforth we focus only on dU ):

Corollary 2. For any uniform distances d1, d2 and any theory Γ , ∆d1,max(Γ ) =
∆d2,max(Γ ). Thus, for every formula ψ, Γ |=d1,max ψ iff Γ |=d2,max ψ.

Another consequence of Proposition 4 is that |=dU ,max is strongly paraconsis-
tent: Only tautological formulas follow from inconsistent theories:

Corollary 3. If Γ is inconsistent, then Γ |=dU,max ψ iff ψ is a tautology.

Proof. Suppose that Γ is not consistent. By Proposition 4, ∆dU,max(Γ ) = Λ, and
so Γ |=dU,max ψ iff ∆dU,max(Γ ) ⊆ mod(ψ), iff mod(ψ) = Λ, iff ψ is a tautology. ut

By Proposition 1 and Corollary 3 we conclude that reasoning with uniform
distances under the minmax strategy has a somewhat ‘crude nature’: either the
set of premises is classically consistent, in which case the set of conclusions coin-
cides with that of the classical entailment, or, in case of contradictory premises,
only tautologies are entailed. It follows that in this case questions of satisfiability
and logical entailment are reducible to similar problems in standard propositional
logic, and distance considerations do not cause further computational complica-
tions. Moreover, standard SAT-solvers and theorem provers may be incorporated
for implementing this kind of reasoning.

Next we provide two methods for computerized reasoning in this case. One
is based on the procedure MPV defined in the previous section, and the other
is based on deduction systems.

Proposition 5. If ψ is satisfiable, then RdU (ψ, 0) = mod(ψ) and RdU (ψ, i) = Λ
for every i > 0.



Proposition 6. The function GU : 2Λ → 2Λ defined by GU (V ) = Λ for all
V ⊆ Λ, is an inductive representation of dU .

Proof. Immediate from Proposition 5. ut
Corollary 4. For every theory Γ , the procedure MPV(GU , Γ ) terminates after
at most maxdU

Λ iterations and computes ∆dU,max(Γ ).

Proof. By Propositions 3 and 6. ut
Another way of computing consequences of the entailment relation |=dU ,max

is by the deduction system Su
max, defined in Figure 2. This system manipulates

expressions of the form Γ : V , where Γ is a theory and V ⊆ Λ.

– Axioms:

∅ : Λ (A0)

{ψ} : mod(ψ) if mod(ψ) 6= ∅ (A1)

{ψ} : Λ if mod(ψ) = ∅ (A2)

– Inference Rules:

Γ1 : V1 Γ2 : V2

Γ1 ∪ Γ2 : V1 ∩ V2
if mod(Γ1 ∪ Γ2) 6= ∅ (I1)

Γ1 : V1 Γ2 : V2

Γ1 ∪ Γ2 : Λ
if mod(Γ1 ∪ Γ2) = ∅ (I2)

Fig. 2. The system Su
max

Definition 9. For a theory Γ and a set V ⊆ Λ, denote by `Su
max

Γ : V that Γ : V
is provable in Su

max, and by Γ `Su
max

ψ that `Su
max

Γ : V for some V ⊆ mod(ψ).

Example 4. Let Γ = {p, q,¬p ∧ ¬q}. We show that Γ `Su
max

p ∨ ¬p. Indeed,

p : {〈p : t, q : t〉, 〈p : t, q : f〉} q : {〈p : t, q : t〉, 〈p : f, q : t〉}
¬p ∧ ¬q : {p : f, q : f} p, q : {〈p : t, q : t〉}

p, q,¬p ∧ ¬q : Λ
(I2)

(I1)

Thus, Γ `Su
max

ψ iff mod(ψ) = Λ. In particular, Γ `Su
max

p ∨ ¬p.

Proposition 7 (soundness and completeness). Γ |=dU,max ψ iff Γ `Su
max

ψ.

Proof (outline). The main observation is that for every theory Γ , `Su
max

Γ : V iff
V = ∆dU,max(Γ ). This immediately implies the proposition, since if Γ |=dU,max ψ
then ∆dU,max(Γ )⊆mod(ψ). By the observation above, Γ : ∆d,max(Γ ) is provable
in Su

max, and so Γ `Su
max

ψ. Conversely, if Γ `Su
max

ψ, then there is some V ⊆
mod(ψ) such that Γ : V is provable in Su

max. By the main observation again,
V = ∆dU,max, thus ∆dU,max(Γ ) ⊆ mod(ψ), and so Γ |=dU,max ψ. ut



3.3 Hamming distances

Next, we examine min-max reasoning with the Hamming distance dH (see Exam-
ple 1). First, we consider some important cases in which reasoning with Hamming
distances coincides with reasoning with uniform distances.

Definition 10. Denote: Kn
i =

∑i
j=1

(
j
n

)
.

Definition 11. A formula ψ is i-validated for i ∈ N+, if among the 2|Atoms(ψ)|

valuations on Atoms(ψ), at most K|Atoms(ψ)|
i valuations do not satisfy ψ.

Note 4. An i-validated formula is also j-validated, for 1 ≤ i ≤ j ≤ |Atoms(ψ)|.
Example 5. Any tautology is 1-validated (thus it is i-validated for any i). Also,
every literal (i.e., an atomic formula or its negation) is 1-validated. Moreover, as
a disjunction of literals is either a tautology or is falsified by only one valuation,

Lemma 2. Every clause is 1-validated.

Proposition 8. If Γ consists of 1-validated formulas, then for every aggregation
function f and every formula ψ, Γ |=dH,f ψ iff Γ |=dU,f ψ.

Proof (outline). It is sufficient to show that for any 1-validated formula ψ and
any µ∈Λ, dH(µ, ψ) = dU (µ, ψ). Indeed, if µ ∈ mod(ψ), dH(µ, ψ) = dU (µ, ψ) = 0.
Otherwise, µ 6∈ mod(ψ), and so dH(µ, ψ) = dU (µ, ψ) = 1. This follows from the
fact that if ψ is i-validated, then for every µ ∈ Λ, dH(µ, ψ) ≤ i. ut
Corollary 5. If Γ is a set of clauses, then

– Γ |=dH,f ψ iff Γ |=dU,f ψ for every aggregation f and formula ψ,
– Γ |=dH,max ψ iff Γ `Su

max
ψ.

Proof. The first item follows from Lemma 2 and Proposition 8; the second item
follows from the first item and Proposition 7. ut

For 1-validated premises we therefore have a sound and complete proof sys-
tem. The remainder of this section deals with the other cases.

Definition 12. For µ ∈ Λ, denote by Diff(µ, i) the set of valuations differing
from µ in exactly i atoms.

The next result is an analogue, for Hamming distances, of Proposition 6.

Proposition 9. The function GH : 2Λ → 2Λ, defined for every V ⊆ Λ by
GH(V ) = V ∪⋃

µ∈V Diff(µ, 1), is an inductive representation of dH .

Proof. Straightforward from the definition of RdH . ut
Proposition 10. MPV(GH , Γ ) terminates after no more than maxdH

Λ itera-
tions and returns ∆dH,max(Γ ). If Γ consists of i-validated formulas, MPV(GH , Γ )
terminates after at most i iterations.

Proof. The first part follows from Propositions 3 and 9. As for every µ ∈ Λ
dH(µ, ψ) ≤ i when ψ is i-validated, we have that RdH (ψ, i) = Λ for all ψ ∈ Γ .
In the notations of Figure 1, then, after i iterations X1∩ . . .∩Xn = Λ, so MPV
must terminate by the i-th iteration. ut



4 Reasoning by Voting

Definition 13. Given a multiset D = {d1, . . . , dn}, denote the number of zeros
in D by Zero(D). A k

m -voting function vote k
m

, where k < m ∈ N, is defined as
follows:

vote k
m

(D) =





0 if Zero(D) = n,
1
2 if d k

mne ≤ Zero(D) < n,
1 otherwise.

In what follows, we shall assume that the argument of vote k
m

is a multiset of
elements in {0, 1} (e.g., a multiset of drastic distances). In this case, it is easy to
verify that vote k

m
is an aggregation function. Intuitively, vote k

m
simulates a pole

and requires a quorum of at least d k
me of the ‘votes’ to determine implications

of inconsistent theories. Indeed, if Γ is not consistent and there are valuations
that satisfy at least d k

me of the elements of Γ , then ∆dU ,vote k
m

(Γ ) contains all

such valuations. Otherwise, ∆dU ,vote k
m

(Γ ) = Λ. Note that for every k
m ≥ 1

2 the
function vote acts as a majority function for inconsistent theories.

Definition 14. Let Γ = {ψ1, . . . , ψn}. Let Sub k
m

(Γ ) be the set of all subsets of
Γ of size d k

mne, and denote mod k
m

(Γ ) =
⋃

H∈Sub k
m

(Γ ) mod(H).

Proposition 11. For every theory Γ ,

∆dU,vote k
m

(Γ ) =





mod(Γ ) if mod(Γ ) 6= ∅,
mod k

m
(Γ ) otherwise, if mod k

m
(Γ ) 6= ∅,

Λ otherwise.

By Proposition 11, ∆vote
dU , k

m

(Γ ) is computable as follows:

Vote k
m

({ψ1, . . . , ψn})
/* Most plausible valuations of {ψ1, . . . , ψn} w.r.t. dU and vote k

m
*/

for i ∈ {1, . . . , n}: Xi ← mod(ψi)

Y ← ∅
if (X1 ∩ . . . ∩Xn) is nonempty, return (X1 ∩ . . . ∩Xn)

for every subset I of {1, . . . , n} of size d k
m

ne: Y ← Y ∪Tj∈I Xj

if Y is nonempty return Y else return Λ

Fig. 3. Computing the most plausible valuations of {ψ1, . . . , ψn} w.r.t. dU and vote k
m

Proposition 12. Vote k
m

(Γ ) always terminates and returns ∆dU ,vote k
m

(Γ ).

Proof. Immediately follows from Proposition 11. ut



5 Summation of Distances

Summation of distances is probably the most common approach for distance-
based reasoning. In this section we consider this kind of reasoning. Again, we
first consider the general case and then concentrate on more specific distances.

5.1 Arbitrary pseudo distances

Consider the system SΣ in Figure 4. Again, SΣ manipulates expressions of the
form Γ :V , where Γ is a theory and V ⊆ Λ. We denote by Γ `SΣ

ψ that Γ :V
is provable in SΣ (i.e., `SΣ

Γ :V ) for some V ⊆ mod(ψ).

– Axioms:

∅ : Λ (A0)

{ψ} : mod(ψ) if mod(ψ) 6= ∅ (A1)

{ψ} : Λ if mod(ψ) = ∅ (A2)

– Inference Rule:

Γ1 : V1 Γ2 : V2

Γ1 ∪ Γ2 : V1 ∩ V2
if V1 ∩ V2 6= ∅ (J1)

Fig. 4. The system SΣ

Proposition 13 (soundness). For every d, if Γ `SΣ
ψ then Γ |=d,Σ ψ.

Proof (outline). If Γ `SΣ
ψ then `SΣ

Γ : V for some V ⊆ mod(ψ). By induction
on the length of the proof of Γ : V in SΣ one shows that this implies that
V = ∆d,Σ(Γ ), and so ∆d,Σ(Γ ) ⊆ mod(ψ). Thus, Γ |=d,Σ ψ. ut

For another way of reasoning with summation of distances we note that, as
in the case of max and the voting function, it is possible to identify distance-
summation conclusions by a set-theoretical condition.

Definition 15. Let d be an inductively representable pseudo distance. Denote:
Ωi1,...,in

d ({ψ1, . . . , ψn}) =
⋂n

k=1Rik

d (ψi).

Proposition 14. For an inductively representable pseudo distance d and a the-
ory Γ = {ψ1, . . . , ψn}, let m be the minimal number s.t. Ωi1,...,in

d ({ψ1, . . . , ψn})
is not empty for some sequence i1, . . . , in in which Σn

k=1ik = m. Then ∆d,Σ(Γ ) =⋃
j1+...+jn=m Ωj1,...,jn

d (Γ ).

Proposition 14 indicates that reasoning with summation of distances is a
constraint programming problem: given a theory Γ = {ψ1, . . . , ψn}, the goal is
to minimize the value of Σn

j=iij for which the intersection Ri1
d (ψ1)∩. . .∩Rin

d (ψn)
is not empty. Hence, CLP-solvers may be used here for checking entailments.

Note 5. For any pseudo distance d it holds that ∆d,Σ(Γ ) = ∆d,Σ(Γ \{ϕ}) when-
ever ϕ is a tautology or a contradiction. Thus, tautologies and contradictions
have a degenerate role in the computations above (cf. Note 3).



5.2 Uniform distances

As we show below, summation of uniform distances is closely related to the
max-SAT problem.5

Definition 16. Let SAT(Γ ) be the set of all the satisfiable multisets in Γ
and mSAT(Γ ) the set of the maximally satisfiable elements in SAT(Γ ) (that is,
mSAT(Γ ) consists of all Υ ∈SAT(Γ ) such that |Υ ′| ≤ |Υ | for every Υ ′ ∈ SAT(Γ )).
Denote: mod(mSAT(Γ )) = {µ ∈ Λ | µ ∈ mod(Υ ) for some Υ ∈mSAT(Γ )}.
Note 6. Clearly, mSAT(Γ ) is not empty whenever Γ has a satisfiable element.
Also, all the elements in mSAT(Γ ) have the same size.

Proposition 15. Let d be a uniform distance. Then:

∆d,Σ(Γ ) =

{
{ν ∈ mod(Υ ) | Υ ∈ mSAT(Γ )} if mSAT(Γ ) 6= ∅,
Λ otherwise.

By Proposition 15 we conclude the following:

– Entailments w.r.t. |=d,Σ may be computed by max-SAT solving techniques
and by incorporating off-the shelf max-SAT solvers (see, e.g., [3, 6, 7, 11]).

– As in the case of max, uniform distances behave similarly w.r.t. summation:

Corollary 6. For any two uniform distances d1, d2 and a theory Γ , ∆d1,Σ(Γ )
is the same as ∆d2,Σ(Γ ), and so Γ |=d1,Σ ψ iff Γ |=d2,Σ ψ.

By the second item above, we may concentrate on the drastic distance dU .
Now, the system SΣ defined in Figure 4 is not complete for |=dU ,Σ , as its inference
rule does not cover all the inter-relations among the premises. By Proposition 15,
for a complete system one may add the following rule:

Γ1 : V1 Γ2 : V2

Γ1 ∪ Γ2 : mod(mSAT(Γ1 ∪ Γ2))
if V1 ∩ V2 = ∅ (J2)

Obviously, (J2) is not an inference rule in the usual sense, as its conclusion is not
affected by V1 and V2. As such, this rule is not very useful. Yet, the combination
of (J1) and (J2) may be helpful, e.g., in the context of belief revision, as:

a) if the condition of (J1) is satisfied, the most plausible valuations of the revised
theory should not be recomputed, and

b) if the condition of (J1) is not met, (J2) indicates the auxiliary source of
computations, namely: revision can be determined by max-SAT calculations.

Definition 17. Denote by Su
Σ the system SΣ together with (J2).

Proposition 16 (soundness and completeness). Γ `Su
Σ

ψ iff Γ |=dU,Σ ψ.

5 The original formulation of max-SAT is about finding a valuation that satisfies a
maximal set of clauses in a set Γ (see, e.g., [10] for some complexity results and [8]
for related approximation methods). By the max-SAT problem in our context we
mean an extended version of the problem, according to which one has to find all the
valuations that satisfy a maximal set of formulas from a multiset Γ .



5.3 Hamming distances

Summation of Hamming distances is very common in the context of belief revi-
sion and database integration. Yet, the deductive systems developed so far for
this semantics are limited to a very narrow fragment of propositional languages.
One example is the logic MF , introduced in [4], in which the premises are sets of
literals. In this case, reasoning with |=dH,Σ reduces to ‘counting’ majority votes:

Fact 1 Let Γ be a multiset of literals. Then Γ |=dH,Σ ψ iff ψ is in the transitive
closure of Maj(Γ ), where Maj(Γ ) consists of the literals in Γ whose number of
appearances in Γ is strictly bigger than the appearances in Γ of their negations.

Based on this fact, the modal logic MF in [4] assumes that the set Γ of premises
consists only of literals, and represents the fact that a literal l appears i times
in Γ by the modal operator Bi

Γ . Then, l follows from Γ (l is believed; BΓ l) if it
holds that Bi

Γ l ∧Bj
Γ¬l for some i > j ≥ 0.

The following result suggests an alternative way for automated reasoning
with summation of Hamming distances, in more general contexts:

Proposition 17. For every theory Γ and a formula ψ we have that Γ |=dH ,Σ ψ
if Γ `SΣ

ψ. If Γ is a set of clauses, then Γ |=dH ,Σ ψ iff Γ `Su
Σ

ψ.

Proof. The first part of the proposition is a particular case of Proposition 13;
The second part follows from Propositions 8 and 16. ut

Proposition 17 provides a very first step toward automated reasoning with
Hamming distances. More general techniques are a subject for future work.
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