An Introduction to GLIF

Mor Peleg, Ph.D.
Post-doctoral Fellow, SMI, Stanford Medical School, Stanford University, Stanford, CA

Aziz A. Boxwala, M.B.B.S, Ph.D.
Research Scientist and Instructor
DSG, Harvard Medical School
Brigham & Women’s Hospital, Boston, MA

HL7 Winter Working Group Meeting
Orlando • January, 2001
Outline

- Computer-interpretable guidelines
- Sharing computer-interpretable guidelines
- Requirements for a shared guideline model
- GLIF
Computer-interpretable guidelines

In this talk, we address computer-interpretable guidelines that
- deliver patient-specific recommendations
- are integrated with EMRs and Health Information Systems
 » Automated reminders/alerts
 » Decision support and task management
 » Order entry appropriateness, referral criteria…
 » Background monitoring, care plans, quality review
Benefits of computer-interpretable guidelines

• Provide automatic decision support
 - Applied to individual patients
 - Can be during the clinical encounter
• Guidelines can be better designed
 - Software tools and guideline models used to specifying logic precisely
 - Ambiguities reduced
• Can integrate guidelines into workflow
 - Patient-specific guideline knowledge available at point of care, to person or entity needing it
Benefits, cont’d

• Can be used for quality assurance
 - Guideline defines gold-standard of care
 - Perform retrospective analysis to test if patients were treated appropriately

• Simulations for educational purposes

• Can aid in human visualization
 - interactive, dynamic display of guideline pathways
 - allows one to focus on relevant sections of flowchart
 - useful for authoring as well as for use
Assume:
Health care will benefit

Assume:
Practitioners will internalize and thereby follow the guideline

Assume:
Practitioners will read the guideline

Benefits: development & dissemination

Literature Review
Consensus Process
Evidence Evaluation

Guideline Creation,
Review, and Approval

Guideline Publication
(article or monograph)

Guideline Dissemination
Outline

• Computer-interpretable guidelines
• Sharing computer-interpretable guidelines
• Requirements for a shared guideline model
• GLIF
Why share computer-interpretable guidelines?

- Leverages cost of guideline development
- Provides consistency in guideline interpretation
- Can minimize misinterpretations and errors through the process of public review
- Facilitates execution rather than just read-only use
- Can provide common basis before local adaptation
Challenges in sharing guidelines by different institutions

- Local adaptation of guidelines
 - Availability of resources and expertise
 - Local workflow issues
 - Practice preferences
- Integration with information systems
 - Match patient data in EMR to GL terms
 - Match recommendations in guideline to actions in order entry system
- Every guideline model needs to address these issues
Obstacles to sharing

• Multiplicity of:
 - conceptual guideline models
 - intended applications
 - authoring tools (separate conceptual from formal, and implementation-specific models?)
 - dissemination formats (XML, RDF...)

January 2001 Mor Peleg and Aziz Boxwala
Common shared model

• Ability to share guideline encodings across:
 - different platforms and systems (e.g., EMRs)
 - different guideline models

• Joint development of:
 - shared model that incorporates features of different models
 - tools to support entire guideline life cycle
 » authoring, validation, local adaptation & mappings, execution, revision and update
Outline

• Computer-interpretable guidelines
• Sharing computer-interpretable guidelines
• Requirements for a shared guideline model
• GLIF
Functional requirements

• The shared model must be based on a set of functional requirements for sharable guidelines

• The functional requirements are organized according to the life-cycle of a computer-based guideline

• These requirements guide the design of GLIF, although we have not satisfied all of them yet
Life cycle of a computer-interpretable guideline

USE
Use and maintenance
Performance analysis

DEVELOPMENT
Authoring
Encoding
Validation

IMPLEMENTATION
Dissemination
Local adaptation and implementation
Testing

Life cycle of a computer-interpretable guideline

January 2001
Mor Peleg and Aziz Boxwala
Development requirements

• Expressiveness
• Comprehensibility
Expressiveness

• Ability to express knowledge content of different types of guidelines
 - Structural parts
 » Definitions, recommendations, algorithms
 - Decision-support guideline tasks
 » Expressive decision model
 » Goal setting
 » Specifying work to be performed
 » Data interpretation
 » Generating alerts and reminders
Comprehensibility

• Guideline visualization and readability
• Complexity management
• Coherence facilitation (e.g., support material)
Implementation Requirements

- Ease of guideline integration into clinical environments
- Ease of sharing actual specifications
Guideline integration into clinical environments

• Local adaptation of guideline content
• Integration with EMR
 – Mapping references to patient data to entries in the medical record
 – Mapping recommendations to implementable actions
 » e.g. linking to order entry system
 » printing a prescription
• Workflow integration
Ease of sharing actual specifications

• Easy to transport specifications among collaborators
 - Text format
 - XML/RDF

• Standard representations should not contain proprietary, application-dependent details
 - e.g., devoid of visualization details
Use requirements

• Support different usage modes
 – Interactive use
 – Batch processing

• Version control
Outline

• Computer-interpretable guidelines
• Sharing computer-interpretable guidelines
• Requirements for a shared guideline model
• GLIF
GLIF

- GuideLine Interchange Format
- A format for sharing clinical guidelines independent of platforms and systems
- Based on an object-oriented logical model of concepts
- Has an XML-based syntax (RDF Schema)
An Approach to Enhance Sharing

- A multi-level representation
- Designed to support multiple vocabularies and medical knowledge bases
- InterMed: multi-institutional development process
- GLIF is evolving as an open standard
 - Cooperation with other guideline modeling groups (Arden, USAM, GEM)
GLIF model

- Object-oriented representation model for guidelines
- Flowchart representation of a temporal sequence of clinical steps

Guideline
name
author

... Has parts

Guideline Step

Has specializations

Action Step
Decision Step
Branch Step
Synchronization Step
Patient State Step

January 2001
Mor Peleg and Aziz Boxwala
GLIF F classes

• **Action steps**: recommendations for clinical actions to be performed
 - e.g., Prescribe aspirin
• **Decision steps**: decision criteria for conditional flowchart traversal
 - e.g., if patient has pain then ...
• **Branch and synchronization steps** allow concurrency
• **Patient-state step**: characterizes patient’s clinical state
GLIF3 Modeling Process

3 Representation Levels
A. Author/viewer level
 - Conceptual flowchart of clinical actions and decisions
 - Aids in human understanding
B. Abstract machine representation
 - Can be executed by an interpreter
 - Correctness can be analyzed
C. Integration into application environments
 - Application-specific mappings and modifications
 - Not yet supported
Abstract Machine Representation

- Unambiguous syntax for logical expressions
 - based on Arden Syntax
- All logical expressions & actions refer to defined concepts (medical ontology)
- Allowed values, ranges, & time constraints
- Can be interpreted and analyzed for correctness
 - syntax, type, and range checking
Eligibility Criteria

Name
Chronic cough in immunocompetent adults

Specification

\[
((\text{now} - \text{cough}_\text{start}_\text{time}) > 3 \text{ weeks}) \text{ and } \\
((\text{now} - \text{date}_\text{of}_\text{birth}) > 18 \text{ years}) \text{ and } \\
\text{not immunocompromised}
\]

Encoding Language
GLIF_Arden

Didactics

Get Data Items
- Get cough_start_time
- Get date_of_birth
- Get immunocompromised
GLIF example: Guideline

- **Title**: Managing cough as a defense mechanism and as a symptom
- **Author**: Richard S. Irwin, MD, FCCP
 - Worcester, MA
- **Encoded by**: Mor Peleg, PhD
- **Authoring Date**: August 1996
- **Encoded Last Modification Date**: 10/25/2000
- **Developing Institution**: American College of Chest Physicians
 - American Thoracic Society
 - Canadian Thoracic Society
- **Guideline Version**: 2.0
- **Guideline Status**: published
- **GLIF Version**: GLIF3
- **Representation Status**: production
Algorithm

Main Cough guideline

- **<patient state>**
 - Chronic Cough

- **<action>**
 - History
 - Physical

- **<decision>**
 - Suspecting smoking or ACEI as cause of cough
 - yes: Reason to withhold Chest X-ray?
 - no: Cessation of smoking/ACEI
 - Cough gone?
 - yes: Cough gone
 - no: Chest X-Ray

- **<synchronization>**
 - Evaluate PNX, GERD, Asthma
 - Chest X-Ray

- **<branch>**
 - a1
Patient state step

Display Name
Chronic Cough

Name
chronic cough in immunocompetent adults

Patient State Description (+values)

Name
Chronic cough in immunocompetent adults

Specification
((now-cough_start_time) > 3 weeks) and
((now - date_of_birth) > 18 years) and
not immunocompromised

Next Step
parallel

New Encounter

Strength Of Evidence

Didactics
Branch Step

Or “any order”
Synchronization step

Instead, can write a Boolean expression of (input) guideline steps
Action step

<table>
<thead>
<tr>
<th>Name</th>
<th>Triggering Events</th>
</tr>
</thead>
<tbody>
<tr>
<td>Order X-Ray</td>
<td></td>
</tr>
</tbody>
</table>

Tasks

- Chest X-Ray

Next Step

- []

Iteration Info

- []

Didactics

- []

Duration Constraint

- []

Strength Of Evidence

- []

Strength Of Recommendation

- []
Action tasks

Action tasks specify work to be performed
• Medically-Oriented
 – Prescription
 – Lab test order
• Programming-Oriented
 – Call sub-guideline
 – Send message
 – Get patient data (from EMR or User)
Medically-oriented tasks

• Refer to a medical domain ontology that supports:
 - Standard vocabularies
 - Standard data models for representing patient data
 e.g., HL-7’s Unified Service Action Model (USAM)
A medically-oriented task
Calling Sub-guidelines: Nesting

Diagram showing a flowchart with nodes labeled as Chronic cough, Treatment, No bronchoscopy for normal X-ray and common conditions, No non-invasive cardiac studies, No modified Barium Swallow with videofluoroscopy, wait for 4, and End of guideline. The diagram also includes an interaction with a window titled "CoughNested4_00022 (instance of Algorithm)" and "CoughNew1_01554 (instance of Subguideline_Action)".
Get data task
Get knowledge task

- **Name**: Get Contraindicated drugs for the patient
- **Intention**
- **Attribute To Be Assigned**
 - concept_from
- **Variable Name**
 - contraindicated_drugs
- **Input Relationships**
 - ACEI has_contraindication pregnancy
 - beta-blocker has_contraindication Chronic-Obstruct
 - beta-blocker has_contraindication Second degree atric
 - beta-blocker has_contraindication Third degree atric
- **Temporal Constraint**
- **Where Constraint**
 - patient has the indication
Decision model

• Case Step
 - represent decisions that can be automated by directly evaluating logical criteria based on data items from the EMR

• Choice Step
 - represent choices that should be made by the user since they are either safety-critical or require knowledge that is not specified by the guideline
Case step

Level B

Education and risk Factor modification

LDL-Cholesterol > 160 mg/dL

- **Case step**: Level B

 - **Initiate educational program**
 - **Aspirin 81 to 325 mg QD**
 - **Serious adverse effects of contraindication?**
 - **yes**: **Clopidogrel or Warafin**
 - **no**: **Cigarette Smoking?**
 - **yes**: **Smoking Cessation Program**
 - **no**: **High Cholesterol?**
 - **yes**: See NCEP Guidelines
 - **no**: **High Blood Pressure?**
 - **yes**: See JNC VI Guidelines
 - **no**: **Routine Follow-Up**

Options:
- **V C + -**
Specifying patient data

Observation

<table>
<thead>
<tr>
<th>Name</th>
<th>LDL Cholesterol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Referring Concept</td>
<td>C0023824</td>
</tr>
<tr>
<td>Ontology</td>
<td>UMLS</td>
</tr>
<tr>
<td>RIM</td>
<td>USAM</td>
</tr>
</tbody>
</table>

- **Data Value**
 - LDL Cholesterol
 - **Summary Information**
 - This slot currently has 1 value.
 - **Service Cd**
 - LDL_Cholesterol
 - **Mood Cd**
 - event
 - **Critical Time**
 - (07-18-00, 07-18-00)
 - **Activity Time**
 - (07-18-00:21:00)
 - **Recording Time**
 - (07-18-00:21:00)
 - **Value**
 - 80 mg/dL
 - **Normal Range**
 - < 130 mg/dL
 - **Id**
 - 360-78-7920
 - **Method Cd**
 - serum, 12h fast
 - **Severity**
 - high
 - **Status Cs**
 - completed
 - **Interpretation Cd**
 - normal

(Created by the Protégé authoring tool)
Choice Step

Option 1
(transplant)
StrictRuleIn
availability of a donor kidney

Choice Step
(Pre-ESRD evaluation)

Option 2
(hemodialysis/HD)

Option 3
(Peritoneal dialysis/PD)

RuleIns
Patients who prefer PD or will not go to HD

...
RuleOuts
Peritoneal leaks

...
StrictRuleOuts
Documented loss of peritoneal function or extensive abdominal adhesions that limit dialysate flow

...
GLIF3: Summary

• GLIF3 is a language designed to allow sharing of clinical guidelines across different platforms and systems

• GLIF3 enables encoding of the logic of guidelines in a way that is computable
 - Highly structured specification
 - Formal expression syntax (based on Arden Syntax)
 - Medical domain ontology (vocabularies, USAM)

• For more information see www.GLIF.org
Architecture for software tools

- Guideline server
 - Execution engine
 - Protocol-based care
 - Consultation
 - Disease management
 - Validation
 - Risk assessment
 - Authoring
 - Web browser
GLIF: a proposed basis for a shared representation

- GLIF addresses authoring & dissemination
- InterMed’s major focus now is on:
 - mapping to clinical information systems
 - tools to facilitate validation and execution
- Under the HL7 GLIF SIG:
 - collaborative refinement and extension to support the needs of the guideline life cycle
 - reconciliation of functional requirements of different models and identification of those most important for supporting implementation
Macro Step

• Subclasses of action and decision steps
• Declaratively specify a procedural pattern

MLM-Macro

<table>
<thead>
<tr>
<th>evoke:</th>
<th>logic:</th>
<th>action:</th>
</tr>
</thead>
</table>

Underlying GLIF

<table>
<thead>
<tr>
<th>Decision Step</th>
<th>Events</th>
<th>criterion</th>
</tr>
</thead>
</table>

| T | Action tasks |

• Benefits for authoring, visual understanding, and execution of guidelines