Non-deterministic Semantics as a Proof-Theoretical Tool

Anna Zamansky

Vienna University of Technology

Joint work with Matthias Baaz and Ori Lahav
Our goals:

- Characterization of important syntactic properties of calculi: *cut-admissibility, the subformula property, invertibility of rules,...*
- Understanding the dependencies between them.

Our tool: non-deterministic semantics.

Our case study: canonical labelled calculi.
Can we semantically characterize $\vdash G - (cut) s$? For example, what is the semantics of the logic induced by $\text{LK} - (cut)$?
Can we semantically characterize $\vdash_{G-\text{(cut)}} S$?
Can we semantically characterize $\vdash_{G-\text{(cut)}}$?

For example, what is the semantics of the logic induced by $\text{LK} - (\text{cut})$?
What is a logic?

1. A formal language \(\mathcal{L} \), based on which \(\mathcal{L} \)-formulas are constructed.

2. A relation \(\vdash \) between sets of \(\mathcal{L} \)-formulas and \(\mathcal{L} \)-formulas, satisfying:

 - Reflexivity: if \(\psi \in \mathcal{T} \) then \(\mathcal{T} \vdash \psi \).
 - Monotonicity: if \(\mathcal{T} \vdash \psi \) and \(\mathcal{T} \subseteq \mathcal{T}' \), then \(\mathcal{T}' \vdash \psi \).
 - Transitivity: if \(\mathcal{T} \vdash \psi \) and \(\mathcal{T}', \psi \vdash \varphi \) then \(\mathcal{T}, \mathcal{T}' \vdash \varphi \).
How are logics defined by sequent calculi?

Sequent calculi can induce logics in two possible ways:

- **v:** $\Gamma \vdash^v_G \varphi \iff \{ \Rightarrow \psi \mid \psi \in \mathcal{T} \} \vdash^G \Rightarrow \varphi$
- **t:** $\Gamma \vdash^t_G \varphi \iff \vdash^G \Gamma \Rightarrow \varphi \text{ for some finite } \Gamma \subseteq \mathcal{T}$

Lemma

For any sequent calculus G, \vdash^v_G is a logic. But if G does not include cut, \vdash^t_G is not necessarily a logic!
How are logics defined by sequent calculi?

- Sequent calculi can induce logics in two possible ways:

 \[\begin{align*}
 v: & \quad \mathcal{T} \vdash^v_G \varphi \iff \{ \Rightarrow \psi \mid \psi \in \mathcal{T} \} \vdash_G \Rightarrow \varphi \\
 t: & \quad \mathcal{T} \vdash^t_G \varphi \iff \vdash_G \Gamma \Rightarrow \varphi \quad \text{for some finite } \Gamma \subseteq \mathcal{T}
 \end{align*} \]

Lemma

For any sequent calculus \(G \), \(\vdash^v_G \) is a logic.

But if \(G \) does not include cut, \(\vdash^t_G \) is not necessarily a logic!
Cut-Admissibility

Can we semantically characterize the logic $\vdash_{v \text{ LK}} (\text{cut})$?

- $\vdash_{v \text{ LK}}$ and $\vdash_{v \text{ LK}-(cut)}$ are different logics:

 $\Rightarrow p_1 \supset p_2 \vdash_{\text{LK}} \Rightarrow p_1 \supset (p_3 \supset p_2)$

 $\Rightarrow p_1 \supset p_2 \vdash_{v \text{ LK}-(cut)} \Rightarrow p_1 \supset (p_3 \supset p_2)$
Can we semantically characterize the logic $\vdash_{\mathbf{LK}-(cut)}$?

- $\vdash_{\mathbf{LK}}$ and $\vdash_{\mathbf{LK}-(cut)}$ are different logics:

 $$\Rightarrow p_1 \supset p_2 \vdash_{\mathbf{LK}} \Rightarrow p_1 \supset (p_3 \supset p_2)$$

 $$\Rightarrow p_1 \supset p_2 \not\vdash_{\mathbf{LK}-(cut)} \Rightarrow p_1 \supset (p_3 \supset p_2)$$
Classical Logic

The Matrix \(\mathbf{MLK} \)

- Truth-values: \(\{T, F\} \)
- An \(\mathbf{MLK} \)-valuation is a *model* of a sequent \(\Gamma \Rightarrow \Delta \) iff \(v(\psi) = F \) for some \(\psi \in \Gamma \) or \(v(\psi) = T \) for some \(\psi \in \Delta \).
- Truth-tables:

<table>
<thead>
<tr>
<th>(\neg)</th>
<th>T</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(\wedge)</th>
<th>T</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>

Soundness and Completeness

\(\Omega \vdash_{LK} s \) iff every \(\mathbf{MLK} \)-valuation which is a model of every sequent in \(\Omega \) is also a model of \(s \).
Classical Logic

The Matrix \mathbf{MLK}

- Truth-values: $\{T, F\}$
- An \mathbf{MLK}-valuation is a model of a sequent $\Gamma \Rightarrow \Delta$ iff $v(\psi) = F$ for some $\psi \in \Gamma$ or $v(\psi) = T$ for some $\psi \in \Delta$.
- Truth-tables:

\[
\begin{array}{c|c|c}
\sim & T & F \\
\hline
T & T & F \\
F & T & T \\
\end{array}
\quad
\begin{array}{c|c|c}
\land & T & F \\
\hline
T & T & F \\
F & F & F \\
\end{array}
\]

Soundness and Completeness

$\Omega \vdash_{\mathbf{LK}} s$ iff every \mathbf{MLK}-valuation which is a model of every sequent in Ω is also a model of s.

(Trivial) Observation

Every \mathbf{MLK}-valuation v is either a model of $\Rightarrow \varphi$ or of $\varphi \Rightarrow$, but not both!
The semantics for \(\Vdash_{\text{LK}}^\nu \) (cut)

(Trivial) Observation

Every \(M_{\text{LK}} \)-valuation \(\nu \) is either a model of \(\Rightarrow \varphi \) or of \(\varphi \Rightarrow \), but not both!

- Why not both? Because of cut:
 \[
 \frac{\Gamma \Rightarrow \varphi, \Delta \quad \Gamma, \varphi \Rightarrow \Delta}{\Gamma \Rightarrow \Delta}
 \]

- Discarding cut makes this option possible.
The semantics for $\vdash^v_{LK-(cut)}$

(Trivial) Observation
Every M_{LK}-valuation v is either a model of $\Rightarrow \varphi$ or of $\varphi \Rightarrow$, but not both!

- Why not both? Because of cut:
 \[
 \frac{\Gamma \Rightarrow \varphi, \Delta \quad \Gamma, \varphi \Rightarrow \Delta}{\Gamma \Rightarrow \Delta}
 \]
- Discarding cut makes this option possible.
- New truth-values: $\{\{T\}, \{F\}, \{T, F\}\}$
The semantics for \(\vdash^\nu_{LK-(cut)} \)

(Trivial) Observation

Every \(M_{LK} \)-valuation \(\nu \) is either a model of \(\Rightarrow \varphi \) or of \(\varphi \Rightarrow \), but not both!

- Why not both? Because of cut:
 \[
 \Gamma \Rightarrow \varphi, \Delta \quad \Gamma, \varphi \Rightarrow \Delta \\
 \hline
 \Gamma \Rightarrow \Delta
 \]
- Discarding cut makes this option possible.
- **New truth-values:** \{\{T\}, \{F\}, \{T, F\}\}
- **New definition of model:** A valuation is a *model* of a sequent \(\Gamma \Rightarrow \Delta \) iff
 \(F \in \nu(\psi) \) for some \(\psi \in \Gamma \) or \(T \in \nu(\psi) \) for some \(\psi \in \Delta \).
 - For example: \(\nu(\varphi) = \{T, F\} \) iff \(\nu \) is a model of both \(\Rightarrow \varphi \) and \(\varphi \Rightarrow \).
The semantics for $\vdash^v_{\text{LK}-(\text{cut})}$

(Trivial) Observation

Every M_{LK}-valuation v is either a model of $\Rightarrow \varphi$ or of $\varphi \Rightarrow$, but not both!

- Why not both? Because of cut: $
\frac{\Gamma \Rightarrow \varphi, \Delta \quad \Gamma, \varphi \Rightarrow \Delta}{\Gamma \Rightarrow \Delta}$

- Discarding cut makes this option possible.

- New truth-values: $\{\{\text{T}\},\{\text{F}\},\{\text{T},\text{F}\}\}$

- New definition of model: a valuation is a model of a sequent $\Gamma \Rightarrow \Delta$ iff $F \in v(\psi)$ for some $\psi \in \Gamma$ or $T \in v(\psi)$ for some $\psi \in \Delta$.
 - For example: $v(\varphi) = \{\text{T},\text{F}\}$ iff v is a model of both $\Rightarrow \varphi$ and $\varphi \Rightarrow$.

- But no new truth-tables!

Theorem

(Lahav, 2012) $\vdash^v_{\text{LK}-(\text{cut})}$ does not have a finite characteristic matrix.
Our goals:
- Characterization of important syntactic properties of calculi.
- Understanding the dependencies between them.

Our tool: non-deterministic semantics.

Our case study: canonical labelled calculi.
Non-deterministic Semantics - Motivation

- **Principle of Truth-Functionality (PTF):** the truth-value of a complex formula is uniquely determined by the truth-values of its subformulas.

- **Non-deterministic phenomena in possible conflict with PTF:**
 - vagueness
 - incompleteness
 - uncertainty
 - imprecision
 - inconsisteny

- **Relaxing PTF:** non-deterministic evaluation of formulas.

<table>
<thead>
<tr>
<th></th>
<th>T</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>{T}</td>
<td>{T, F}</td>
</tr>
<tr>
<td>F</td>
<td>{T, F}</td>
<td>{F}</td>
</tr>
</tbody>
</table>
Intuition for Introducing Non-determinism

Consider a fully structural calculus with the following rules:

\[
\begin{align*}
&\Gamma \Rightarrow \Delta, \psi \\
&\Gamma, \neg\psi \Rightarrow \Delta \\
&\Gamma, \psi \Rightarrow \Delta \\
&\Gamma, \varphi \Rightarrow \Delta \\
&\Gamma, \psi \lor \varphi \Rightarrow \Delta \\
&\Gamma \Rightarrow \Delta, \psi, \varphi \\
&\Gamma \Rightarrow \Delta, \psi \lor \varphi
\end{align*}
\]
Intuition for Introducing Non-determinism

\[\Gamma \Rightarrow \Delta, \psi \]
\[\Gamma, \neg \psi \Rightarrow \Delta \]
\[\Gamma, \psi \Rightarrow \Delta \]
\[\Gamma, \varphi \Rightarrow \Delta \]
\[\Gamma, \psi \lor \varphi \Rightarrow \Delta \]
\[\Gamma \Rightarrow \Delta, \psi \lor \varphi \]

\[\neg \]
\[T \quad F \]
\[T \quad F \]
\[F \quad T \]

\[\lor \]
\[T \quad T \quad T \]
\[T \quad F \quad T \]
\[F \quad T \quad T \]
\[F \quad F \quad F \]
Intuition for Introducing Non-determinism

\[
\begin{align*}
\Gamma \Rightarrow \Delta, \psi \\
\Gamma, \neg \psi \Rightarrow \Delta \\
\end{align*}
\]

\[
\begin{align*}
\Gamma \Rightarrow \Delta, \psi, \phi \\
\Gamma \Rightarrow \Delta, \psi \lor \phi \\
\end{align*}
\]

\[
\begin{array}{c|cc|}
\top & \top & \top \\
\end{array}
\]
Intuition for Introducing Non-determinism

\[
\begin{align*}
\Gamma \Rightarrow \Delta, \psi & \\
\Gamma, \neg \psi \Rightarrow \Delta
\end{align*}
\]

\[
\begin{align*}
\Gamma \Rightarrow \Delta, \psi, \varphi & \\
\Gamma \Rightarrow \Delta, \psi \vee \varphi
\end{align*}
\]
Many-valued Matrices

A (deterministic) matrix \mathbf{M} for \mathcal{L} consists of:

- \mathcal{V} - the set of truth-values,
- \mathcal{O} - contains an interpretation function $\tilde{\diamond} : \mathcal{V}^n \rightarrow \mathcal{V}$ for every n-ary connective \diamond of \mathcal{L}.

An \mathbf{M}-valuation $\nu : \text{Frm}_\mathcal{L} \rightarrow \mathcal{V}$ satisfies:

$$\nu(\diamond(\psi_1, \ldots, \psi_n)) = \tilde{\diamond}(\nu(\psi_1), \ldots, \nu(\psi_n))$$
A non-deterministic matrix \mathbf{M} for \mathcal{L} consists of:

- \mathcal{V} - the set of truth-values,
- \mathcal{O} - contains an interpretation function $\tilde{\diamond} : \mathcal{V}^n \rightarrow \mathcal{P}^+(\mathcal{V})$ for every n-ary connective \diamond of \mathcal{L}.

An \mathbf{M}-valuation $\nu : \text{Frm}_\mathcal{L} \rightarrow \mathcal{V}$ satisfies:

$$\nu(\diamond(\psi_1, \ldots, \psi_n)) \in \tilde{\diamond}(\nu(\psi_1), \ldots, \nu(\psi_n))$$
Example: The Paraconsistent Logic CLuN of Batens

L — a language over \{\lor, \land, \supset, \neg\}, $V = \{F, T\}, $D = \{T\}.

\lor, \land$ and \supset are interpreted classically, while \neg satisfies the law of excluded middle $\neg\varphi \lor \varphi$, but not the law of contradiction $\neg(\varphi \land \neg\varphi)$.

$M^2 = \langle V, D, O \rangle$ where O is given by:

\[
\begin{array}{c|c|c|c}
\lor & \land & \supset \\
\hline
T & T & \{T\} & \{T\} & \{T\} \\
T & F & \{T\} & \{F\} & \{F\} \\
F & T & \{T\} & \{F\} & \{T\} \\
F & F & \{F\} & \{F\} & \{T\} \\
\end{array}
\]

\[
\begin{array}{c|c}
\neg & \\
\hline
T & \{T, F\} \\
F & \{T\} \\
\end{array}
\]
Key property of Nmatrices:

- **Analyticity**: any partial \mathbf{M}-valuation can be extended to a full \mathbf{M}-valuation.
- **Consequence**: decidability (in the finite case).
What is the semantics of $\vdash^\gamma_{LK-(cut)}$?

- We start with the simplest system: identity axiom + weakening (no logical rules, no cut)
- Truth-values: $\{\{T\}, \{F\}, \{T, F\}\}$
What is the semantics of $\vdash_{\text{LK}}^\forall (\text{cut})$?

- We start with the simplest system: identity axiom + weakening (no logical rules, no cut)
- Truth-values: $\{\{T\}, \{F\}, \{T, F\}\}$

The corresponding Nmatrix:

<table>
<thead>
<tr>
<th>\wedge</th>
<th>${T}$</th>
<th>${F}$</th>
<th>${T, F}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>${T}$</td>
<td>${{T}, {F}, {T, F}}$</td>
<td>${{T}, {F}, {T, F}}$</td>
<td>${{T}, {F}, {T, F}}$</td>
</tr>
<tr>
<td>${F}$</td>
<td>${{T}, {F}, {T, F}}$</td>
<td>${{T}, {F}, {T, F}}$</td>
<td>${{T}, {F}, {T, F}}$</td>
</tr>
<tr>
<td>${T, F}$</td>
<td>${{T}, {F}, {T, F}}$</td>
<td>${{T}, {F}, {T, F}}$</td>
<td>${{T}, {F}, {T, F}}$</td>
</tr>
</tbody>
</table>
What is the semantics of $\vdash_{LK}^{(cut)}$?

Adding the rule:

$$(\Rightarrow \land) \quad \frac{\Gamma \Rightarrow \Delta, \psi \quad \Gamma \Rightarrow \Delta, \varphi}{\Gamma \Rightarrow \Delta, \psi \land \varphi}$$

The corresponding Nmatrix:

<table>
<thead>
<tr>
<th>\land</th>
<th>${T}$</th>
<th>${F}$</th>
<th>${T, F}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>${T}$</td>
<td>${{T}, {F}, {T, F}}$</td>
<td>${{T}, {F}, {T, F}}$</td>
<td>${{T}, {F}, {T, F}}$</td>
</tr>
<tr>
<td>${F}$</td>
<td>${{T}, {F}, {T, F}}$</td>
<td>${{T}, {F}, {T, F}}$</td>
<td>${{T}, {F}, {T, F}}$</td>
</tr>
<tr>
<td>${T, F}$</td>
<td>${{T}, {F}, {T, F}}$</td>
<td>${{T}, {F}, {T, F}}$</td>
<td>${{T}, {F}, {T, F}}$</td>
</tr>
</tbody>
</table>
What is the semantics of $\vdash^\lor_{LK\neg (cut)}$?

Adding the rule:

$$ (\Rightarrow \land) \quad \frac{\Gamma \Rightarrow \Delta, \psi \quad \Gamma \Rightarrow \Delta, \varphi}{\Gamma \Rightarrow \Delta, \psi \land \varphi} $$

The corresponding Nmatrix:

<table>
<thead>
<tr>
<th>\land</th>
<th>${T}$</th>
<th>${F}$</th>
<th>${T,F}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>${T}$</td>
<td>${{T}, {T,F}}$</td>
<td>${{T}, {F}, {T,F}}$</td>
<td>${{T}, {T,F}}$</td>
</tr>
<tr>
<td>${F}$</td>
<td>${{T}, {F}, {T,F}}$</td>
<td>${{T}, {F}, {T,F}}$</td>
<td>${{T}, {F}, {T,F}}$</td>
</tr>
<tr>
<td>${T,F}$</td>
<td>${{T}, {T,F}}$</td>
<td>${{T}, {F}, {T,F}}$</td>
<td>${{T}, {T,F}}$</td>
</tr>
</tbody>
</table>
What is the semantics of $\vdash^{\gamma}_{LK} - (cut)$?

Adding the rule:

\[
(\wedge \Rightarrow) \quad \frac{\Gamma, \psi, \varphi \Rightarrow \Delta}{\Gamma, \psi \wedge \varphi \Rightarrow \Delta}
\]

The corresponding Nmatrix:

<table>
<thead>
<tr>
<th>$\tilde{\wedge}$</th>
<th>${T}$</th>
<th>${F}$</th>
<th>${T, F}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>${T}$</td>
<td>${{T}, {T, F}}$</td>
<td>${{T}, {F}, {T, F}}$</td>
<td>${{T}, {T, F}}$</td>
</tr>
<tr>
<td>${F}$</td>
<td>${{T}, {F}, {T, F}}$</td>
<td>${{T}, {F}, {T, F}}$</td>
<td>${{T}, {F}, {T, F}}$</td>
</tr>
<tr>
<td>${T, F}$</td>
<td>${{T}, {T, F}}$</td>
<td>${{T}, {F}, {T, F}}$</td>
<td>${{T}, {T, F}}$</td>
</tr>
</tbody>
</table>
What is the semantics of $\vdash_{\mathbf{LK}}\neg (\text{cut})$?

Adding the rule:

$$(\land \Rightarrow) \quad \frac{\Gamma, \psi, \varphi \Rightarrow \Delta}{\Gamma, \psi \land \varphi \Rightarrow \Delta}$$

The corresponding Nmatrix:

<table>
<thead>
<tr>
<th>\land</th>
<th>${\text{T}}$</th>
<th>${\text{F}}$</th>
<th>${\text{T, F}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>${\text{T}}$</td>
<td>${{\text{T}}, {\text{T, F}}}$</td>
<td>${{\text{F}}, {\text{T, F}}}$</td>
<td>${{\text{T, F}}}$</td>
</tr>
<tr>
<td>${\text{F}}$</td>
<td>${{\text{F}}, {\text{T, F}}}$</td>
<td>${{\text{F}}, {\text{T, F}}}$</td>
<td>${{\text{F, T, F}}}$</td>
</tr>
<tr>
<td>${\text{T, F}}$</td>
<td>${{\text{T, F}}}$</td>
<td>${{\text{F}, {\text{T, F}}}$</td>
<td>${{\text{T, F}}}$</td>
</tr>
</tbody>
</table>
What is the semantics of \(\vdash_{LK \neg \text{(cut)}} \)?

The corresponding \(\tilde{\wedge} \) matrix:

<table>
<thead>
<tr>
<th>(\tilde{\wedge})</th>
<th>{T}</th>
<th>{F}</th>
<th>{T, F}</th>
</tr>
</thead>
<tbody>
<tr>
<td>{T}</td>
<td>{{T}, {T, F}}</td>
<td>{{F}, {T, F}}</td>
<td>{{T, F}}</td>
</tr>
<tr>
<td>{F}</td>
<td>{{F}, {T, F}}</td>
<td>{{F}, {T, F}}</td>
<td>{{F}, {T, F}}</td>
</tr>
<tr>
<td>{T, F}</td>
<td>{{T, F}}</td>
<td>{{F}, {T, F}}</td>
<td>{{T, F}}</td>
</tr>
</tbody>
</table>

Recall: An valuation is a **model** of a sequent \(\Gamma \Rightarrow \Delta \) iff \(f \in v(\psi) \) for some \(\psi \in \Gamma \) or \(t \in v(\psi) \) for some \(\psi \in \Delta \).
What is the semantics of $\vdash_{LK-(cut)}^v$?

The corresponding Nmatrix:

<table>
<thead>
<tr>
<th>\wedge</th>
<th>{T}</th>
<th>{F}</th>
<th>{T, F}</th>
</tr>
</thead>
<tbody>
<tr>
<td>{T}</td>
<td>{{T}, {T, F}}</td>
<td>{{F}, {T, F}}</td>
<td>{{T, F}}</td>
</tr>
<tr>
<td>{F}</td>
<td>{{F}, {T, F}}</td>
<td>{{F}, {T, F}}</td>
<td>{{F}, {T, F}}</td>
</tr>
<tr>
<td>{T, F}</td>
<td>{{T, F}}</td>
<td>{{F}, {T, F}}</td>
<td>{{T, F}}</td>
</tr>
</tbody>
</table>

Recall: An valuation is a model of a sequent $\Gamma \Rightarrow \Delta$ iff $f \in v(\psi)$ for some $\psi \in \Gamma$ or $t \in v(\psi)$ for some $\psi \in \Delta$.

Soundness and Completeness

$\Omega \vdash_{LK-(cut)}^v s$ iff every $M_{LK-(cut)}$-valuation which is a model of every sequent in Ω is also a model of s.

→ New formulation of results of Schütte (1960) and Girard (1987).
Application: Semantic Proof of Cut-Admissibility in \textbf{LK}

Cut-Admissibility in \textbf{LK}

$\vdash_{\textbf{LK}} S \iff \vdash_{\textbf{LK}-(\text{cut})} S$

Reduces to proving that for every $M_{\textbf{LK}-(\text{cut})}$-valuation which is not a model of some sequent s, there exists an $M_{\textbf{LK}}$-valuation which is not a model of s.

Proof by induction on the build-up of formulas.
Reduces to proving that for every $M_{\text{LK}-(\text{cut})}$-valuation which is not a model of some sequent s, there exists an M_{LK}-valuation which is not a model of s.

Proof by induction on the build-up of formulas.
Our goals:

- Characterization of important syntactic properties of calculi.
- Understanding the dependencies between them.

Our tool: non-deterministic semantics.

Our case study: canonical labelled calculi.
What is a Canonical Rule?

- An “ideal” logical rule: an introduction rule for exactly one connective, on exactly one side of a sequent.
- In its formulation: exactly one occurrence of the introduced connective, no other occurrences of other connectives.
- Its active formulas: immediate subformulas of its principal formula.
Examples of Canonical Rules

\[\Gamma, \psi, \varphi \Rightarrow \Delta\]
\[\Gamma, \psi \land \varphi \Rightarrow \Delta\]
\[\Gamma \Rightarrow \Delta, \psi\]
\[\Gamma, \neg \psi \Rightarrow \Delta\]

\[\Gamma \Rightarrow \Delta, \psi\]
\[\Gamma \Rightarrow \Delta, \neg \psi\]
Example 1

Let G_1 be a fully structural calculus with the following rules:

$$\{\rightarrow \psi_1 ; \rightarrow \psi_2 \} / \psi_1 \diamond \psi_2 \Rightarrow \{\psi_1 \Rightarrow ; \psi_2 \Rightarrow \} / \Rightarrow \psi_1 \diamond \psi_2$$

<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
<th>$\diamond (a, b)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>${F}$</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>${T,F}$</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>${T,F}$</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>${T}$</td>
</tr>
</tbody>
</table>
Let G_2 be a fully structural calculus with the following rules:

$$\{\psi_2 \Rightarrow\} / \psi_1 \circ \psi_2 \Rightarrow \{\Rightarrow \psi_1\} / \Rightarrow \psi_1 \circ \psi_2$$

<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
<th>(a, b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>${T}$</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>\emptyset</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>\emptyset</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>${T,F}$</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>${F}$</td>
</tr>
</tbody>
</table>
A non-deterministic matrix for \mathcal{L} consists of:

- \mathcal{T} - the set of truth-values,
- \mathcal{O} - contains an interpretation function $\tilde{\diamond} : \mathcal{V}^n \rightarrow P^+(\mathcal{V})$ for every n-ary connective \diamond of \mathcal{L}.
A non-deterministic partial matrix for \mathcal{L} consists of:

- \mathcal{T} - the set of truth-values,
- \mathcal{O} - contains an interpretation function $\tilde{\diamond} : \mathcal{V}^n \rightarrow P(\mathcal{V})$ for every n-ary connective \diamond of \mathcal{L}.

A PNmatrix is proper if it includes no “empty spots”.

Non-deterministic Partial Matrices
Key property of Nmatrices:

- **Analyticity**: any partial M-valuation can be extended to a full M-valuation.
- **Consequence**: decidability (in the finite case).
Key property of PNmatrices:

- **Weak Analyticity:** it is *decidable* whether a partial M-valuation can be extended to a full M-valuation.
- **Consequence:** decidability (in the finite case).
The two-sided case: a direct correspondence

Theorem

If \(G \) is a (two-sided) canonical calculus, then the following statements are equivalent:

1. \(G \) has a characteristic proper two-valued PNmatrix.
2. \(G \) enjoys strong cut-admissibility.
3. \(G \) enjoys the subformula property.
The two-sided case: a direct correspondence

Theorem

If G *is a (two-sided) canonical calculus, then the following statements are equivalent:*

1. G *has a characteristic proper two-valued PNmatrix.*
2. G *enjoys strong cut-admissibility.*
3. G *enjoys the subformula property.*

- **The Subformula Property:** Whenever $\Omega \vdash_G s$, there is a derivation of s from Ω in G consisting solely of \mathcal{E}-sequents (i.e. sequents consisting solely of formulas from \mathcal{E}).

- **Strong Cut-Admissibility** Whenever $\Omega \vdash_G s$, there is a derivation of s from Ω in G in which cuts are allowed only on formulas from Ω.
A finite set of labels \mathcal{L}.

A labelled formula: $a : \psi$ for $a \in \mathcal{L}$

A sequent: a finite set of labelled formulas.

Canonical labelled calculi have in addition to weakening two types of rules: primitive rules and canonical introduction rules.
Primitive Rules

\[(L_1 : \psi) \cup s \quad \ldots \quad (L_n : \psi) \cup s\]
\[\overline{(L : \psi) \cup s \cup \ldots \cup s}\]

Notation: we write \((\{a, b, c\} : \psi)\) instead of \(\{a : \psi, b : \psi, c : \psi\}\).

Examples:

\[\{F : \psi\} \cup s \quad \{T : \psi\} \cup s\]
\[\overline{s}\]

\[s\]
\[\overline{(\{T, F\} : \psi) \cup s}\]

\[\{(a) : \psi\} \cup s \quad \{(b) : \psi\} \cup s\]
\[\overline{(\{c, d\} : \psi) \cup s}\]
Canonical Introduction Rules

\[
\frac{\{T : \psi_1\} \cup s \quad \{T : \psi_2\} \cup s}{\{T : \psi_1 \land \psi_2\} \cup s}
\]

\[
\frac{\{F : \psi_1, F : \psi_2\} \cup s}{\{F : \psi_1 \land \psi_2\} \cup s}
\]

\[
\frac{\{a : \psi_1, b : \psi_2\} \cup s \quad \{c : \psi_2, a : \psi_3, b : \psi_3\} \cup s}{(\{a, b\} : \circ(\psi_1, \psi_2, \psi_3) \cup s)
\]
Possible truth-values in the two-sided case: \(\{\emptyset, \{F\}, \{T\}, \{T, F\}\} \).

Possible truth-values in the labelled case: \(P(L) \).

A valuation \(\nu \) is a model of a sequent \(\Omega \) if for some labelled formula \(a : \psi \) in \(\Omega \), \(a \in \nu(\psi) \).

Primitive rules determine the actual set of truth-values.

Introduction rules determine the truth-tables of the logical connectives.
Start with the calculus over $\mathcal{L} = \{a, b, c\}$ including only weakening.

$$\text{Vals} = \{\emptyset, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, \{a, b, c\}\}$$
Start with the calculus over $\mathcal{L} = \{a, b, c\}$ including only weakening.

$$\text{Vals} = \{\emptyset, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, \{a, b, c\}\}$$

Now we add the primitive rules:

\[
\begin{align*}
\frac{s}{(\{a, b\} : \psi) \cup s} & \quad \frac{\{a : \psi\} \cup s}{s} \quad \frac{\{b : \psi\} \cup s}{s} \quad \frac{\{c : \psi\} \cup s}{s} \\
\text{Vals} = \{\{b\}, \{a\}, \{a, b\}\}
\end{align*}
\]
Example

Start with the calculus over \(L = \{a, b, c\} \) including only weakening.

\[
Vals = \{\emptyset, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, \{a, b, c\}\}
\]

Now we add the primitive rules:

\[
\frac{s}{(\{a, b\} : \psi) \cup s}
\]

\[
\frac{\{a : \psi\} \cup s \quad \{b : \psi\} \cup s \quad \{c : \psi\} \cup s}{s}
\]

\[
Vals = \{\{b\}, \{a\}, \{a, b\}\}
\]

The corresponding PNmatrix:

<table>
<thead>
<tr>
<th>(\tilde{\wedge})</th>
<th>{a}</th>
<th>{b}</th>
<th>{a, b}</th>
</tr>
</thead>
<tbody>
<tr>
<td>{a}</td>
<td>{a}, {b}, {a, b}</td>
<td>{a}, {b}, {a, b}</td>
<td>{a}, {b}, {a, b}</td>
</tr>
<tr>
<td>{b}</td>
<td>{a}, {b}, {a, b}</td>
<td>{a}, {b}, {a, b}</td>
<td>{a}, {b}, {a, b}</td>
</tr>
<tr>
<td>{a, b}</td>
<td>{a}, {b}, {a, b}</td>
<td>{a}, {b}, {a, b}</td>
<td>{a}, {b}, {a, b}</td>
</tr>
</tbody>
</table>
Adding the introduction rule:

\[
\frac{\{a : \psi_1\} \cup s \quad \{a : \psi_2\} \cup s}{\{a : \psi_1 \land \psi_2\} \cup s}
\]

The corresponding PNmatrix:

<table>
<thead>
<tr>
<th>\land</th>
<th>${a}$</th>
<th>${b}$</th>
<th>${a, b}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>${a}$</td>
<td>${a}, {b}, {a, b}$</td>
<td>${a}, {b}, {a, b}$</td>
<td>${a}, {b}, {a, b}$</td>
</tr>
<tr>
<td>${b}$</td>
<td>${a}, {b}, {a, b}$</td>
<td>${a}, {b}, {a, b}$</td>
<td>${a}, {b}, {a, b}$</td>
</tr>
<tr>
<td>${a, b}$</td>
<td>${a}, {b}, {a, b}$</td>
<td>${a}, {b}, {a, b}$</td>
<td>${a}, {b}, {a, b}$</td>
</tr>
</tbody>
</table>
Example

Adding the introduction rule:

\[
\begin{align*}
\{a : \psi_1\} \cup s & \quad \{a : \psi_2\} \cup s \\
\{a : \psi_1 \land \psi_2\} \cup s
\end{align*}
\]

The corresponding PNmatrix:

<table>
<thead>
<tr>
<th></th>
<th>(\tilde{\land})</th>
<th>({a})</th>
<th>({b})</th>
<th>({a, b})</th>
</tr>
</thead>
<tbody>
<tr>
<td>({a})</td>
<td>{{a}, {a, b}}</td>
<td>{{a}, {b}, {a, b}}</td>
<td>{{a}, {a, b}}</td>
<td></td>
</tr>
<tr>
<td>({b})</td>
<td>{{a}, {b}, {a, b}}</td>
<td>{{a}, {b}, {a, b}}</td>
<td>{{a}, {b}, {a, b}}</td>
<td></td>
</tr>
<tr>
<td>({a, b})</td>
<td>{{a}, {a, b}}</td>
<td>{{a}, {b}, {a, b}}</td>
<td>{{a}, {a, b}}</td>
<td></td>
</tr>
</tbody>
</table>
Example

Adding the introduction rule:

\[
\frac{\{ b : \psi_1, b : \psi_2 \} \cup s}{\{ b : \psi_1 \land \psi_2 \} \cup s}
\]

The corresponding PNmatrix:

<table>
<thead>
<tr>
<th>(\tilde{\land})</th>
<th>({a})</th>
<th>({b})</th>
<th>({a, b})</th>
</tr>
</thead>
<tbody>
<tr>
<td>({a})</td>
<td>({{a}, {a, b}})</td>
<td>({{a}, {b}, {a, b}})</td>
<td>({{a}, {a, b}})</td>
</tr>
<tr>
<td>({b})</td>
<td>({{a}, {b}, {a, b}})</td>
<td>({{a}, {b}, {a, b}})</td>
<td>({{a}, {b}, {a, b}})</td>
</tr>
<tr>
<td>({a, b})</td>
<td>({{a}, {a, b}})</td>
<td>({{a}, {b}, {a, b}})</td>
<td>({{a}, {a, b}})</td>
</tr>
</tbody>
</table>
Example

Adding the introduction rule:

\[
\frac{\{ b : \psi_1, b : \psi_2 \} \cup s}{\{ b : \psi_1 \land \psi_2 \} \cup s}
\]

The corresponding PNmatrix:

<table>
<thead>
<tr>
<th>(\neg)</th>
<th>{a}</th>
<th>{b}</th>
<th>{a, b}</th>
</tr>
</thead>
<tbody>
<tr>
<td>{a}</td>
<td>{{a}, {a, b}}</td>
<td>{{b}, {a, b}}</td>
<td>{{a, b}}</td>
</tr>
<tr>
<td>{b}</td>
<td>{{b}, {a, b}}</td>
<td>{{b}, {a, b}}</td>
<td>{{b}, {a, b}}</td>
</tr>
<tr>
<td>{a, b}</td>
<td>{{a, b}}</td>
<td>{{b}, {a, b}}</td>
<td>{{a, b}}</td>
</tr>
</tbody>
</table>
Adding the introduction rule:

\[
\frac{\{ b : \psi_1 \} \cup s \quad \{ b : \psi_2 \} \cup s}{\{ c : \psi_1 \land \psi_2 \} \cup s}
\]

The corresponding PNmatrix:

<table>
<thead>
<tr>
<th>(\wedge)</th>
<th>{a}</th>
<th>{b}</th>
<th>{a, b}</th>
</tr>
</thead>
<tbody>
<tr>
<td>{a}</td>
<td>{{a}, {a, b}}</td>
<td>{{b}, {a, b}}</td>
<td>{{a, b}}</td>
</tr>
<tr>
<td>{b}</td>
<td>{{b}, {a, b}}</td>
<td>\emptyset</td>
<td>\emptyset</td>
</tr>
<tr>
<td>{a, b}</td>
<td>{{a, b}}</td>
<td>\emptyset</td>
<td>\emptyset</td>
</tr>
</tbody>
</table>
All Labelled Calculi are Decidable

Theorem

Every canonical labelled calculus has a characteristic (finite) PNmatrix.
All Labelled Calculi are Decidable

Theorem

Every canonical labelled calculus has a characteristic (finite) PNmatrix.

Corollary

Any logic induced by canonical labelled calculus is decidable.
The Subformula Property

Whenever $\Omega \vdash_G s$, there is a derivation of s from Ω in G consisting solely of E-sequents (i.e. sequents consisting solely of formulas from E).
Application: characterization of syntactic properties

The Subformula Property
Whenever $\Omega \vdash_G s$, there is a derivation of s from Ω in G consisting solely of \mathcal{E}-sequents (i.e. sequents consisting solely of formulas from \mathcal{E}).

Strong Cut-Admissibility
Whenever $\Omega \vdash_G s$, there is a derivation of s from Ω in G in which cuts are allowed only on formulas from Ω.

We call cut any primitive rule of the form $\frac{(L_1 : \psi) \ldots (L_n : \psi)}{s}$
The Subformula Property
Whenever $\Omega \vdash^G s$, there is a derivation of s from Ω in G consisting solely of E-sequents (i.e. sequents consisting solely of formulas from E).

Strong Cut-Admissibility
Whenever $\Omega \vdash^G s$, there is a derivation of s from Ω in G in which cuts are allowed only on formulas from Ω.

\[
\frac{(L_1 : \psi) \ldots (L_n : \psi)}{s}
\]

We call cut any primitive rule of the form s

Are these properties equivalent?
The subformula property \(\nRightarrow\) strong cut-admissibility

\[\mathcal{L} = \{a, b, c\} \]

\(G\) has the following cuts:

\[
\begin{align*}
\{a : \psi\} & \cup s & \{b : \psi\} & \cup s & \{a : \psi\} & \cup s & \{c : \psi\} & \cup s & \{b : \psi\} & \cup s & \{c : \psi\} & \cup s \\
\end{align*}
\]

and the following introduction rules:

\[
\begin{align*}
(\{a, b\} : \psi) & \cup s & (\{b, c\} : \psi) & \cup s \\
\{a : \odot \psi\} & \cup s & \{a : \odot \psi\} & \cup s
\end{align*}
\]

Then we can derive:

\[
\begin{align*}
\{a : \psi\} & \\
\{a, b\} & : \odot \psi & \{a : \psi\} & \\
\{b, c\} & : \odot \psi & \{b : \odot \psi\} & \quad \text{cut}
\end{align*}
\]

But \(\{b : \odot \psi\}\) has no derivation from \(\{a : \psi\}\) with cuts only on \(\psi\).
The problem can be solved by adding the primitive rule (which does not affect the semantics of the calculus):

\[
\frac{(\{a, b\} : \psi) \cup s}{\{b : \psi\} \cup s} \quad \frac{(\{b, c\} : \psi) \cup s}{pr}
\]

Then we have a (cut-free!) derivation:

\[
\frac{\{a : \psi\}}{\{a, b\} : \star\psi} \quad \frac{\{a : \psi\}}{\{b, c\} : \star\psi} \quad \frac{\{b : \star\psi\}}{pr}
\]
The problem can be solved by adding the primitive rule (which does not affect the semantics of the calculus):

\[
\frac{\{a, b\} : \psi \cup s \quad \{b, c\} : \psi \cup s}{\{b : \psi\} \cup s \quad \text{pr}}
\]

Then we have a (cut-free!) derivation:

\[
\frac{\{a : \psi\}}{\{a, b\} : \star \psi \quad \text{pr}} \quad \frac{\{a : \psi\}}{\{b, c\} : \star \psi \quad \text{pr}}
\]

The addition of all such harmless primitive rules leads to a cut-saturated calculus.

Theorem

For every labelled canonical calculus \(\mathbf{G} \) an equivalent cut-saturated \(\mathbf{G}' \) can be constructed.
Finally: a semantic characterization

Theorem

Let G be a cut-saturated canonical labelled calculus. Then the following statements are equivalent:

1. G has a *proper* characteristic PNmatrix.
2. G enjoys strong cut-admissibility.
3. G enjoys the subformula property.
Our goals:
- Characterization of important syntactic properties of calculi.
- Understanding the dependencies between them.

Our tool: non-deterministic semantics.

Our case study: canonical labelled calculi.
The techniques can be applied to many families of proof systems: single-conclusioned canonical calculi, basic systems, canonical Gödel hypersequent systems and more.

Future research directions:
- First-order case
- Extension to calculi with less restrictive primitive and introduction rules.
- Substructural logics...